Приближённое решение - Definition. Was ist Приближённое решение
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Приближённое решение - definition

ПОСТАНОВЛЕНИЕ СУДА, КОТОРЫМ ДЕЛО РАЗРЕШАЕТСЯ ПО СУЩЕСТВУ
Решение судебное; Решение (право); Решение суда; Вердикт суда; Юридическое решение

Приближённое решение      

дифференциальных уравнений, получение аналитических выражений (формул) или численных значений, приближающих с той или иной степенью точности искомое частное решение дифференциального уравнения.

П. р. дифференциальных уравнений в виде аналитического выражения может быть найдено методом рядов (степенных, тригонометрических и др.), методом малого параметра, последовательных приближений методом (См. Последовательных приближении метод), Ритца и Галёркина методами (См. Ритца и Галёркина методы), Чаплыгина методом. Каждый из этих методов определяет один или несколько бесконечных процессов, с помощью которых при выполнении определённых условий можно получить точное решение задачи. Для получения П. р. останавливаются на некотором шаге процесса.

Если решение ищется в виде бесконечного ряда, то за П. р. принимают конечный отрезок ряда. Например, пусть требуется найти решение дифференциального уравнения y' = f (x, у), удовлетворяющее начальным условиям у (х0) = y0, причём известно, что f (x, у) - аналитическая функция х, у в некоторой окрестности точки (х0, y0). Тогда решение можно искать в виде степенного ряда:

y (x) - y (x0) = .

Коэффициенты Ak ряда могут быть найдены либо по формулам:

A1 = y'0 = f (x0, y0);

либо с помощью неопределенных коэффициентов метода (См. Неопределённых коэффициентов метод). Метод рядов позволяет находить решение лишь при малых значениях величины х - х0.

Часто (например, при изучении периодических движений в небесной механике и теории колебаний) встречается случай, когда уравнение состоит из членов двоякого вида: главных и второстепенных, причём второстепенные члены характеризуются наличием в них малых постоянных множителей. Обычно после отбрасывания второстепенных членов получается уравнение, допускающее точное решение. Тогда решение основного уравнения можно искать в виде ряда, первым членом которого является решение уравнения без второстепенных членов, а остальные члены ряда расположены по степеням малых постоянных величин, входящих во второстепенные члены (малых параметров). При этом уравнения для коэффициентов при степенях малых параметров линейны, что облегчает их решение. В роли малого параметра иногда выступают начальные значения (например, при изучении колебаний около положения равновесия). Метод малого параметра был использован при решении задачи о возмущённом движении в небесной механике Л. Эйлером и П. Лапласом. Теоретическое обоснование этого метода дали А. М. Ляпунов и А. Пуанкаре.

К численным методам относятся методы, позволяющие находить П. р. при некоторых значениях аргумента (т. е. получать таблицу приближённых значений искомого решения), пользуясь известными значениями решения в одной или нескольких точках. Такими методами являются, например, метод Эйлера, метод Рунге и целый ряд разностных методов.

Поясним эти методы на примере уравнения

y'' = f (x, у)

с начальным условием у (х0) = y0. Пусть точное решение этого уравнения представлено в некоторой окрестности точки х0 в виде ряда по степеням h = х - х0 Основной характеристикой точности формул П. р. дифференциальных уравнений является требование, чтобы первые k членов разложения в ряд по степеням h П. р. совпадали с первыми k членами разложения в ряд по степеням h точного решения.

Основная идея метода Эйлера заключается в применении метода рядов для вычисления приближённых значений решения у (х) в точках x1, x2,..., xn некоторого фиксированного отрезка [х0, b] Так, для того чтобы вычислить у (х1), где х1 = х0 + h, h = (b - x0)/n, представляют у (х1) в виде конечного числа членов ряда по степеням h = х1 - х0. Например, ограничиваясь первыми двумя членами ряда, получают для вычисления у (xk) формулы:

,

Это т. н. метод ломаных Эйлера (на каждом отрезке [xk, xk+1] интегральная кривая заменяется прямолинейным отрезком - звеном ломаной Эйлера). Погрешность метода пропорциональна h2.

В методе Рунге вместо того, чтобы отыскивать производные, находят такую комбинацию значений f (x, у) в некоторых точках, которая даёт с определённой точностью несколько первых членов степенного ряда для точного решения уравнения. Например, правая часть формулы Рунге:

,

где

;

;

;

дает первые пять членов степенного ряда с точностью до величин порядка h5.

В разностных формулах П. р. удаётся несколько раз использовать уже вычисленные значения правой части. Решение ищется в виде линейной комбинации у (xi), ηi и разностей Δiηj, где

ηj = hf (xj, yj); Δηj = ηj+1 - ηj;

Δiηj = Δi-1ηj+1 - Δi-1ηj.

Примером разностной формулы П. р. является экстраполяционная формула Адамса. Так, формула Адамса, учитывающая "разности" 3-го порядка:

даёт решение у (х) в точке xk с точностью до величин порядка h4.

Для уравнений 2-го порядка можно получить формулы численного интегрирования путём двукратного применения

----------------------------------------------------------------------------------------------------------------------------------------

| Формула | k = 2 | k = 3 | k = 4 |

|--------------------------------------------------------------------------------------------------------------------------------------|

| (1 + x)3 1 + 3x | 0,04 | 0,012 | 0,004 |

|--------------------------------------------------------------------------------------------------------------------------------------|

| | 0,06 | 0,022 | 0,007 |

|--------------------------------------------------------------------------------------------------------------------------------------|

| | 0,19 | 0,062 | 0,020 |

|--------------------------------------------------------------------------------------------------------------------------------------|

| | 0,20 | 0,065 | 0,021 |

|--------------------------------------------------------------------------------------------------------------------------------------|

| | 0,31 (17°48') | 0,144 (8°15') | 0,067 (3°50') |

|--------------------------------------------------------------------------------------------------------------------------------------|

| | 0,10 (5°43') | 0,031 (l'48') | 0,010 (0°34') |

|--------------------------------------------------------------------------------------------------------------------------------------|

| | 0,25 (14°8') | 0,112 (6°25') | 0,053 (3°2') |

|--------------------------------------------------------------------------------------------------------------------------------------|

| | 0,14 | 0,47 | 0,015 |

|--------------------------------------------------------------------------------------------------------------------------------------|

| | 0,04 | 0,014 | 0,004 |

|--------------------------------------------------------------------------------------------------------------------------------------|

| | 0,25 | 0,119 | 0,055 |

----------------------------------------------------------------------------------------------------------------------------------------

формулы Адамса. Норвежский математик К. Стёрмер получил формулу:

особенно удобную для решения уравнений вида у'' = f (x, у). По этой формуле находят Δ2yn-1, а затем yn+1 = ynyn+1 + Δ2yn-1. Найдя yn+1, вычисляют y''n+1 = f (xn+1, yn+1), находят разности и повторяют процесс далее.

Указанные выше численные методы распространяются и на системы дифференциальных уравнений.

Значение численных методов решения дифференциальных уравнений особенно возросло с распространением ЭВМ.

Кроме аналитических и численных методов, для П. р. дифференциальных уравнений применяются графические методы. В простейшем из них строят поле направлений, определяемое дифференциальным уравнением, т. е. в некоторых точках рисуют направления касательной к интегральной кривой, проходящей через эту точку. Затем проводят кривую так, чтобы касательные к ней имели направления поля (см. Графические вычисления).

Лит.: Березин И. С., Жидков Н. П., Методы вычислений, 2 изд., т. 2, М.. 1962; Бахвалов Н. С., Численные методы, М., 1973: Коллатц Л., Численные методы решения дифференциальных уравнений, пер. с нем., М., 1953; Милн В. Э., Численное решение дифференциальных уравнений, пер, с англ., М., 1955.

Архитектурное решение         
ЧАСТЬ ПРОЕКТНОЙ РАБОТЫ ПО СОЗДАНИЮ ДОКУМЕНТАЦИИ ДЛЯ ПРОИЗВОДСТВА СТРОИТЕЛЬНЫХ РАБОТ
Архитектурные решения; Архитектурно-художественное решение; Архитектурно-планировочное решение; Функционально-планировочное решение; Объёмно-планировочное решение; Объёмно-пространственное решение; Архитектурно-композиционное решение; Объемно-планировочное решение; Объемно-пространственное решение
Архитекту́рное реше́ние (архитектурные решения, АР) — часть проектной работы, направленной на создание документации для производства строительных работ.
Решение задач         
ПРОЦЕСС ВЫПОЛНЕНИЯ ОБЩИХ МЕСТНЫХ ИЛИ МЕСТНЫХ ДЕЙСТВИЙ, НАПРАВЛЕННЫЙ НА РЕШЕНИЕ ПРОБЛЕМ
Решение проблем
Реше́ние зада́ч — выполнение действий или мыслительных операций, направленных на достижение цели, заданной в рамках проблемной ситуации — задачи. Является составной частью мышления.

Wikipedia

Судебное решение

Судебное решение — постановление суда первой инстанции, которым дело разрешается по существу. Решение суда принимается в совещательной комнате.

Судебное решение традиционно принято рассматривать в двух значениях:

  1. действия суда для завершения судебного разбирательства и подведения итогов;
  2. документ судебной инстанции, содержащий результат разрешения спора по существу.

В Российской Федерации законодательное определение понятия «судебное решение» закреплено:

  1. в Гражданском процессуальном кодексе РФ как «постановление суда первой инстанции, которым дело разрешается по существу»;
  2. в Арбитражном процессуальном кодексе РФ как «судебный акт, принимаемый при рассмотрении дела по существу арбитражным судом первой инстанции».

В уголовном производстве аналогом решения выступает приговор — постановление о невиновности или виновности подсудимого, вынесенное судами первой и апелляционной инстанции.

Помимо судебных решений, суд также издаёт определения и судебные приказы.

Определение об утверждении мирового соглашения по юридической силе не уступает решению.